Leveraging Deep Reinforcement Learning and Braid Representations to Explore Knot Theory BYU SRC Conference

Dylan Skinner - Brigham Young University - 24 February 2024

Reinforcement Learning

What is Reinforcement Learning? Introduction

- Agent is placed in an environment
- Agent interacts with the environment through a set of actions
- Agent chooses its actions to maximize a reward (goal)

Env

Environment

Action a_t

State *s*_t

Action a_t

Action a_t

Proximal Policy Optimization (PPO) Introduction

- Algorithm developed by OpenAl in 2017
- Seeks a balance between ease of implementation, sample complexity, and ease of tuning
- Accomplished by computing update at each step to minimize cost function and deviate only slightly from current policy
- In order for this to work, the algorithm uses two separate policy networks

Proximal Policy Optimization (PPO) Visualized

Knots, Seifert Surfaces, Slice Surfaces

Our Project Knots

- Think of knots as a necklace whose clasps are together
- These knots live in dimension 3

• Seifert surfaces (3D) are orientable surfaces bounded by the knot

• The unknot is the only knot that bounds a disk in S^3

- The unknot is the only knot that bounds a disk in S^3
- The trefoil and figure-eight knots both bound a punctured torus

• 6^1 knot also bounds a punctured torus in S^3

- 6¹ knot also bounds a punctured torus in S^3
- Can we do better if we add an extra dimension?
- Yes!

Our Project Slice Surfaces

- Think of the knot on the surface S^3 of a ball of dimension 4
- Slice surfaces are equivalent to Seifert surfaces, just in dimension 4

Our Project Slice Surfaces

 One way we can look at slice surfaces is level sets

Our Project Slice Surfaces

- Start with a strand
- Add some other strands
- Move the strands around (according to a set of moves)

Braids

Our Project Braids

- Every knot or link can be represented in braid form
- A braid is simply a set of *n* strings attached to a horizontal bar at the top and the bottom
- If you cut a knot at one point, you can attach it to two bars to make a braid

Our Project Braids

- We represent braids through braid words
- If the *n*th strand crosses over the n + 1th strand, represent as σ_n^{-1}
- If the *n*th strand crosses under the n + 1th strand, represent as σ_n
- Braid word: $\sigma_1^{-1}\sigma_2\sigma_1^{-1}$

Our Project and Results

Our Project Actions and Rewards

- Move 0: Remove a crossing
- Moves 1-10: Change the way the braid is presented
- Moves 11-12: Add crossings
- Inaction Penalty (Encourage our agent to find the answer as quick as possible)

- Reward: -1
- Reward: 0
- Reward: -1
- Reward: -0.05 (Hyperparameter)

Our Project Rewards for Results

- If a move produces an unknotted, unlinked component, that component is removed and a reward of +1 is received
- If the agent builds a surface with the maximal Euler characteristic, the environment closes
- If the agent fails to build such a surface, a penalty of -350 is given

Knots Between 3 and 6 Crossings

Knots Between 4 and 7 Crossings

Knots Between 5 and 8 Crossings

Knots Between 6 and 9 Crossings

Knots Between 6 and 10 Crossings

Knots Between 7 and 11 Crossings

Knots Between 6 and 11 Crossings

Knots Between 8 and 14 Crossings

Future Work

- Get above 13 crossings
- Increase network size
 - We ran into GPU memory issues when we made the network too large
- Maybe braids are not the best way to solve this problem
- Potentially change reward/penalty system